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ABSTRACT 

A system  is  proposed  for  grid  allocatiou  and differencing of apparerltly genclral applicability to  purely  marching- 
type  systems of equations of fluid dynamics.  The  method is bascd on casting of the  equations  int,o  the  conservation 
form,  which  then  permits use of a staggered  space-time  grid  system  with  interpolations  required  only  in  certain 
linear  terms. Thc method is illustrated  by  application  to t.wo systems of equations,  on  one of which  numerical 
experiments  have  been successfully performed.  Advantages  and  drawbacks of the  method arc described  in com- 
parison to  other  currently used grid  systems, and the  possibility  and dc;sirability of parametric  simulation of turbulent 
eddy  exchange  processes  are  dixussed. 

1. INTRODUCTION 

The  recent  development of met,hods ol numerical  inte- 
grat#ion of the  equations of fluid dynamics in a more-or-less 
primitive form, i.e., of first, order,  except, for diffusion 
terms,  is  locusing  wt~tent,ion upon new aspect's of rrumericd 
an:dysis. During  the  early  development of geost.rophic 
or balanced  models  which involved a vorticit,v cqust,ion , 
perhaps  t'he most pressing  pract8ictll problems w-erc to 
solve rapidly and accurately  certain  rather complex 
elliptic second  order  part'ial  differential equttt'io11s. In 
dealing wit'h  undifferentiated  systems one finds t h t ,  thc 
basic equations are much  simpler  to  apply  but  must, for 
t,he sake of computational  stability,  be  applied at v r r -  
short  time intervds  compared tmo the time scalcs of t'he 
significant meteorological  phenomena.  This  is  because 
the  normal C~ourarlt-Friedrichs-Lemy stability  critcrion 
requires essent8ially  t'llat  motions or waves  dlo\ved in the 
syst'em not be able to travel  from one grid  point  to the 
next. in  one  time  st'ep, and the undifferent8iatccl  sJ-st'ems 
usually allow faster-moving waves t'han  those of meteoro- 
logical interest. It' is  also noted  that8  the  boundary cotr- 
ditions and  various consist>enc-y requirements, if not. more 
complex, are more critical  when it single computation  run 

rntty irlcludc sevcrtd thousand t'ime steps.  Under t.hese 
circumstances it is desirable t'o examine the time-space 
grid data tdloct1tiorl and differencing  scheme with a view 
t80ward  eliminatming, if feasible, some of the  redundant 
time  resolution and t,llus savc time  and  computation 
expcnse. 1 t : h o  appears  t'hat  when  integrating a set of 
non-linear  equations ovcr zt m0derat.e number of time 
st8eps, s a y  several  hundred, a certain form of instability 
ariscs,  which is relatetl  to  spatial  t'runcation  error  in the 
11011-linear terms.  This  non-linear  instability, discussed 
by Phillips (71, seems to  occur  much more rapidly  in 
primitive  equations  models t'llrtn in  those  using a vorticit,y 
equation,  though  it is uncertain w1wt8llcr this is due t80 
differences in  the  phl-sicd or mat8hemat,ical  behavior of 
thc  systcms.  At  any  ratme  there  appear  to be several 
possible devices for climinat,ion of this  instability,  which 
will bc ment8ioned  later. 

As a method of elimintrt,ing some of the  computat,ional 
reduntl:mcy,  Eliasscn [ :3 ]  proposed :t method of handling 
a  two-lcvcl  primit,ive equations  model,  in  which  variables 
are s t , ;qgerd  in space  and  time  in B somewhat  complex 
manner. The principle on which the  system was based 
was that t.he linear  terms of the  cquat'ions  would  be 
avdllblc at,  the correct,  grid points  with  minimal  trunca- 
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tion error, but  that  certain non-linear  t,erms  would be 
formed  from  products of interpolated  values.  The 
reason  for  doing  this,  presumably, was that t,he  linrar 
terms of the  motion  equations,  the  pressure  gradient ant1 
Coriolis terms, are generally an  order of magrlit'ude 
larger  than  the  others  and  errors  in  these  terms  might be 
thought  to be most  damaging. On the  ot,her  hand  the 
advective  terms  may  contribute as much, and in many 
cases much  more,  toward  significant rates of change of 
quantities  t'han  the  combination of t,he marly ba1:tnccd 
linear  terms. As long  as  truncat8ion  error does not  tlist'urb 
the  existing  quasi-balance  between the  linear terms 
which is most  pronounced  for the larger  scales of motion, 
trhere seems no reason  to  require  interpolation  to be dorlc 
only  on  the  advective  terms. I t  will be shown that,  the 
truncation  error of interpolat,ion  in  tlle  proposed  system is, 
at,  most, of the same order as that  arising from the finite 
difference pressure  gradient,  term,  but  t,hat t,he latter is 
evaluated  with less truncat'ion error in the Eliasscn  grid 
than  in  that  proposed. 

Hinkelmann [3] and Smagorinsky [I 31 have successfully 
npplied hydrostatically  filtered  equations of two-tlirncn- 
sional flow without t8he use of t'ime  or  space  st'aggering of 
the  variables. I n  both of these models tlw external 
gravitational  motions were filt'erecl out  by t'hc vanishing 
boundary  conditions  on dplclt, and it was  thercforc neces- 
sary  to solve a Poisson cqutrt,ion a t  each  time  st,ep. Both 
used t'he marching  equations  in  t'he  conservation  form,  and 
it was found that non-linear  computat8ional  irlst8ability 
ensued, in the absence of specific damping  terms,  witl~in 
two or three  days of commencement of int'cgr' n t '  1011. 

Phillips [8] has  recently  developed a barotropic  divergent 
(free surface)  primitive  equations  model,  in  which  t'he 
Eliassen  grid syst'em has been applied,  witrh  cent,ral  time 
and space differencing,  and also with a one-sided sptace 
difference scheme 191 oriented  according t o  t,he \vim1 
direction  and  relatcd  to  that  originally  proposed 1))- 
Courant,  Isaacson,  and  Rees [I]. The latter  method 
introduces  some  computat8ional  damping  and seems 
effectivelg t'o prevent  development ol non-lincar 
instabilit,y. 

2. PRINCIPLES OF PROPOSED SYSTEM AND 
APPLICATION 

A method will now  bc  presented for stepwise  intcgr. 'I t '  lor1 
of init,ial-value  boundary-value  problems  using  non-liocw 
hydrodynamic  equations. The method appcars t'o be 
generally  applicable to  mct'eorological  problems  when  the 
system of equations  is of an explicit  marching  t,ype,  that' 
is when there are no physical  approximations or con- 
straints which involve the solution of an  elliptic cql1;itsio1l 
a t  each time step. It, is evidently not particu1:lrly suitable 
for application to, for  example, the  barot'ropic \-orticit,\. 
equation, or t'o primitive  cquat'ions  models  such as t'llose 
of Smagorinsky  and  Hinkelmann  in  which c>xt.er.n:d 
gravity  waves  are filt,ered out', because  in t,hese sJ-st'ems 
furt,her  interpolations would  be  necessary. B principtd 

fcature of the  method is t'he  casting of the  equat,ions  into 
the conservation  form, t,he form in which all  advective 
terms tippear as flux divergences. When this is done i t  
becomes very  natural t'o set' up a central  time  and  space 
differencing syst8em on tt space-time  staggered  grid, in 
which interpolations  may be required  only  in  certain 
linear  terms.  The  rnet,hod of interpolation is largely 
optional,  but' t,imc interpolation is generally  most  accurat'e. 
Il' Iriction:il terms are present  (and  it is believed that'  they 
generally  should be) t8hese  are  most  naturally  computed by 
forward differencing, wl~ich  then  simultaneously  preserves 
linear  comput,ational  stabilit'y in t,llese terms.  The 
method will be  illust.ratcd by  application  to a free  surface 
model  similar  to that of Phillips. 

If tmhe  atmosphere is considered as a homogeneous  in- 
compressible fluid wit8h :L frec upper  surface, whose height 
is +/g,  t8he t\\-o-dimensional,  hydrostatically filt,eretl 
equat'ions of motion may be writ'tcn, in Cartcsian  coordi- 
IIat'CS, as 

where e i j k  is thc  permut'ation tensor, equal  to  plus or 
minus  unity for i, j ,  IC= 1, 2, 3 or 2 ,  1, 3 respectively. 

Upon application of the viscosity  hypot,hesis, but, 
wit,hout  assuming  const,ant.  viscosit,y, t l ~ c  frictiorlwl stress 
may be written as 

, T  J h e  repcatcd index  implies  summation, so that, 6 i i  equals 
two  in  t'his case. If we wcrc considering B pllysictd 
system whose cllarncteristic  Reynolds  number  was sn1u11, 
for  example tt disl~pan"  experiment, we could reasonably 
assume. +K constant and the  stress  t,erms would  reduce to 
t,he commo:l Laplacitan form. For t8he  atmospllcric 
system we want L h c  stress  tensor  to  describe  tlle  transfcrs 
of energy,  momentum,  et'c.,  performed  by  turbulent eddy 
motions, t'hc scales of  whic.11 rmge between that of t,lle 
smallest cxplicit81y  clescribctl motions m d  thatm of molecular 
dissipation.  Smagorinsky 1141 proposes that for fully 
t'arbulent flow K be made  proportional to t,he  deforma- 
tion,  i.e. 

i( 

wl~crc~ I is t'lle scale ol  the smallest  resolvable mot,iorls (t,llc 
grid s c d e  in a finite difference formulation) and k is A 

ullivcrsal constmnntm of order  unity.  From  consideration ol 
tllc  similarity of the  above expression to  that  frequently 
npplied  in turbulent  boundary lzlyer theory we consider k 
t.0 be analogous t80 talle KhrmBn constantm. The appear- 
ance of B part8icular  lengt,ll scale in  the  definition is 
rcflcction of t'lle essential correspondence of t'he  frictional 
st'rcss to  the  Reynolds stress, also defirled in  t,erms of t'he 
smle  length scale. 

'I'he form  proposed  by  Smagorinsky is similar  to one 
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applied by von Ncumann  and  Richtmyer [ 101 in  their 
pseudo-viscosity"  method  for  representing  shock milves. 

I t  has been introduced here because of its  seeming  impor- 
t8ance in elimination of the rlon-linear computation:tl 
instability  which is otherwise  permit,tcd by t'hc proposed 
grid differencing scheme  (and many  others  in  current  use). 
The  physical significance and  justification of these  tcrms 
will be shown by Smstgorinsky and cue not discussed 
further here. 

The  continuity  equation is a prediction  equation  for  thr 
height' of t,he free surface,  writt.cn as:  

11 

If (4) is mult8iplicd by ui and  combined  wit'h (l),  i t  mornrn- 
turn equation is obtained,  that, is 

01' 



unimportant. It, has, in  €act,  been  convenient  to  compute 
similar  frictional  terms  over  considerably  longer  time  steps 
thm  the  remainder of the  calculations, and lit't'le error is 
so introduced. I t  is well known,  however,  that  straight- 
forward  central  differencing for t811e diffusion equ. n t '  ions 
may  lead  to  linear  computational  instability (see, e.g., 
Richt'myer [IO]). 

With  regard t'o initial  conditions, it may be  desired  to 
begin computations  with  values of variables  all  pertaining 
to  the same time,  rather  than  in  the  staggered  grid. In 
t'his case it is satisfwtory  to make an init'ial  half-time  st'ep, 
and  similarly to  int'erpolate  between  time st'eps in  ordcr 
t'o obtain a simultaneous  display a t  a later  time. 

3. TRUNCATION ERROR AND COMPUTATIONAL 
STABILITY 

We shall  not  attjetnpt  to  give a coInplet,e discussion of 
the  computational  stability  and  truncat,iorl  error of finite 
difference formulations of (1)-(4). We have,  however, 
detjerrnined the stabilit'y  properties of linearized  versions 
of several  finite difference equivalents of the  frictionless 
system  and  first  approximations  to the truncation errors 
of various terrlls in the  motmion  equat'ions.  This  material 
is assembled in  tjahles 1 and 2 .  The expressions given for 
truncation error are  t8he lowest order  terms of thc  Taylor 
series, and are presented  in  t,his  form  for  comparative 
purposes  rat'her  than  for  any  attempt  at  numerical  eval- 
uation.  The  grid  formulations used  include (a) the nor- 
mal  advective  form,  based  on  equation (I) with  ccntral 
differencing and  no  interpolations; (11) the  proposed 
st,aggered  grid  syst,enl  with  2-point and 4-point' sparc in- 
terpolations,  time  interpolat,ion,  and  f0r~~~ar.d-barkward 
treatment of the  Coriolis  terms; and (c) thc  Eliassen  grid 
as used by Phillips [8]. Figures 1 and 2 illustrate  the 
essential difference between  these  grid  systems. In the 
normal  advective  scheme  all  variables are defined at all 
interscct'ions of figure 1, while  in the proposed staggtretl 
system  all  quarlt,ities  are  defined  for  even  time-steps at 
grid  points  marked "E" and for  odd  time  at,  points "0". 
In the Eliassen scheme t,he  geopot'ential, 4, is dcfined on 
grid "A" of figure 2 for  even  time and grid "D" for odd 
time, u1 is defined on  grid '%" for odd time  and grid "C" 
for even, and ua on grid "C" for odtl time ant1 grid "B" 
for even. The grid  int'erval  shown  on figure 2 was altered 
to (l/a) OI that defined by Phillips  in  order  t,hat  the 
t>runcation errors for  the  various  systems be colllparable. 
Thus  in  all cases the  total  number of points  describing a 
given field, combining odtl and even time  steps, is given 
by  the  ratio of t'hc  tot,al  area  to A'. 

Table 1 shows that t81w non-viscous  linear  cotnputational 
stability  characteristics  are  similar for all t he  grid-tliffer- 
enring  systems  considered. Thc differences lie in the 
Coriolis term, which is ordinarily  two  to three ordcrs of 
magnitude  smaller than that arising from the  external 
gravity  wave  propagation. It may be easily demon- 

f 
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E - 

P 

E - 

0 

FIGURE 1.-Grid system for normal  advective  scheme,  in  which  all 
variables  are defined at all  intersections;  and for proposed 
staggered  system, in which  all  quantities  are defined for even 
time-steps at points E and for odd  time at points 0. 

stratcd that t l l e  friction terms, computed  in  the  form  de- 
scribed,  excrt  an cffect on the  stability  criterion of a t  
most, thr  same order of magnit'ude as the  advection. 

Upon careful  exanlinat,ion of table 2 we find that' 
truncation errors also do not  prcsent' any clear superiorit,J- 
of one s>Tstclrl over another.  Truncation errors in  t'he 
geostrophic  terms  are  certainly rninirnized in the  Eliassen 
scheme,  because of the  smaller differencing interval  in the 
pressure  term.  Severtheless the unavoidable  error of 
first-order differencing of the pressure t,crm is of the  same 
order as t,hat of spatial  interpolation of the  balancing 
Coriolis t m m ,  so that  introduction of the latter breeds no 
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2. Coriolis term; e.g. f u 2  

Normal advective 

2-point space-intc,rpolated  staggered 

None 

FIGURE 2.-The Eliassen scllenirl in which  the geopotcwtinl 4 is 
defined on grid A for even  time and 011 grid D for odd timr, 
u 1  is defined on grid B for odd  time  and on grid C for ever1 time, 
and u 2  is  defined on grid C for odd  time and 011 grid IS for evcw 
time. 

I ti at3 

Sornud advective 

Staggered 

5. Advective t r rm across wind componerlt; e.g. u2- 
a2-2 

au, 

Staggcretl 



difference schemes may be  stable wit.hout damping. I f  
these  result's  can  be  shown to apply to n more generd 
model we may have a close counterpart)  to  the  spectral 
method  which  in some cases may conserve energy identi- 

The  eddy-viscosity  t'erm proposed by Sr~lt~gorinsky 
obviously e x d s  a cianlping  which is  highly  select'ive in 
scale. For a given amplitude of disturbance  kinetic 
energy and a given  grid  interval  the  value of K is propor- 
tional to t'he finite  difference  npproxilnation of the de- 
formstmion  amplitude.  When  central diff'erencing is used 
each  contribution t'o this  anlplitude will be proportional 
to  sin (27rA/X), where X is the  wavelength of a 111otiorl 
component.  Thus  datnping is  maxinlized for wavclcrrgths 
a t  and near 4A and  twtudy vanishes a t  X=2A. Since 
component's  with  wavelengths  betwecn 2 4  and 4A :lro 
most  directly  involved  in  non-linear  instability  it is tllere- 
fore  suggested t,hat, the viscosity  term  prevents  the  instil- 
bility  indirectly.  That' is, it  reduces  t'he  arrlplitutlcs of 
the  interrnediatc scale (stable)  components  which would 
otherwise  generate smdl-scde (unsttLble) conlporlerlts. 
If t8his  is the case we 111ay have retmorutble confidence that 
thc  important effects of the a,nal>-tic viscosit'y terms (a), 
( 3 )  are  fairly well approxilnat~ed by their finit'e  difference 
formulat8ion. 

Ot,her  methods  that. have been used to prevcnt 11011- 

lirletw instability do more or less  violence to the ptlysiys. 
Probably  the  worst  neth hod is to  use :I c+onstm:mt viscosity, 
or its  equivalent  in a diflerence s-stem or smoothing 
filter. Experiments  have  shown  that  in order to  be 
effect'ivc t'he viscosity  must be large enough so that  the 
greatest characteristic  grid  Reynolds  number of the fieltl is 
of order unit,y, where by contrast we note  that, 
Smagorinsky's eddy viscosit?- is of such tl fort11 that'  the 
grid  Reynolds  number is ertrrywhere of order  unity. I n  
order t'o simulate  nlotions ol a turbulent, fluid  one would 
then  have  to  carry  millior~s of grid  points,  otherwise  tlle 
system would be  essentially  laminar and the  large-scale 
component's  severely  oversnloothed. TAX [6] suggested a 
space-t'irne staggered  grid for integration of equatriorls in 
the corlservat,ion form.  Forward-time cliff erencirlg was 
used and variables at t,he  previous  time were spilce- 
averaged  before differencing. This process eff ecr8ively 
introduces a very  large corlstarlt  cornput'at'ional  viscosit'y, 
essentially  equal to A2/4 At,  and t,he grid  Reynolds number 
is of order u/&<a. On  sonlewllatm the opposite  extreme 
of selectivity  is  the  method used by Phillips [7] in  his 
generd circulat'ion  calculations,  which corlsist,ed of Fourier- 
analyzing the  motion field and rernovirlg  all cornponents 
with  wavelengths  less  than 44.  Sorllewhere  between these 
extremes  lies  t.he  one-sided  difference  scheme  first sug- 
gested by  Courant, Isaacson, and  Rees [I], in  which the 
advective  form of the vector equnt,iorl of motion is used 
and  spatial  derivatives twe taken  along  the  characterist'ics 
(st'rearnlines) upward of t'he  central  point.  Vari;mts of 

cally. 

[9]. l lotions are damped,  but rather selectively, and  the 
general  results appear t'o  be very sirnilar to t8hose  obtained 
using  Smagorinsky's eddy friction  form,  although  the 
physical  significance  is unclear. 

4. OTHER COMPUTATIONAL FEATURES 

An  advantage of thc  proposed  system,  in  corr~parison 
with,  for  example,  the  Eliassen  grid, is the  vanishing trun- 
cation error of volume  integrals  (numerical sums) of t'he 
predictmion  variables.  Smagorinsky [ la]  has  shown  that 
this is assured by  applicat'ion of certain  auxiliary  boundary 
conditions  (mainly syrnrrletry  condit'ions) and these in 
turn  prevent  dcvcloprnent of another t:J-pe of cornput'a- 
tiorlal inst,ability.  The  importanceof  this  feature  probably 
dependssornt.wllat on the use to which the part'icular  predic- 
tion  system is put'. For  general  circulation  stmudies,  where 
integrated  lrlolnentunl  budgets,  heat  budgets,  etc. are 
of fundamerltal  interest,  it' seems very desirable to know 
that, for  example,  tlle  mean  geopotential is only a  furlct'ion 
of the  boundary  conditions. For operational  forecasting 
this ma\.- be of lcss direct  int'erest,  t~hough  perhaps co111- 
forting knowlcdgc. In any case it has proven t'o be 
valuahle  for  "debugging"  machine  programlogic,  for  det'er- 
tninution of rnachir~e errors, and for  evaluation of rountl- 
off errors. 

'rhe proposctl systcln has certain  other  practical aclvan- 
tages for :lpplic+ution t'o a higll-speed  electronic colnputcr, 
not  all of which are slutred by other systems.  First,  only 
one set, of variables need be  stored  for et~cll  point,  in 
distinct,ion to  the  two or three  required for a non-staggered 
grid  using  foru.~~rd-differcnccd viscous t'cnns. Second, 
there are just  two  kinds of points,  rather t'lran four as in 
t,he  Eliassen  system,  which  makes  the logic, somewhat 
simpler. On the  ot'hcr hand, application of any  staggered 
grid  system adds definite  logical  colnplicat'ions to a 
machine program, t'hus increasing t'lle programming  and 
check-out  time a n d ,  to a small extent, the time  spent by 
the machine in  logicd  t'esting. 

5. APPLICATION TO OTHER MODELS 

The proposed  nwthod was originally  developed  for, and 
applied to, integration of u set' of two-dirnensiorlal (x1, s3) 
equations used lor the  si~rlultrtion of dry convective 
motions. T h e  system used was  the  following: 

b(P8) bHj -+- (pu,O) =- bt ax3 

where pressure is obtained from the  equation of state in 
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and  the  friction-diffusion  terms were of a similar lorrn, 
though  more  complex,  than  those  described  above. 

The  grid  scheme out’lirled above is clearly applictthle to 
this set, where  t’he  linear  density  term  in  t,he  vertical 
nlomentum  equat’ion  must be interpolated. In this case 
it is possible to  int’erpolate  densit,?  eit,her spatially- or  tinlc- 
wise. Int,egrations  have been successfully perforrncd 
using  t,wo-point#  (vertical)  and  four-point  spatial  interpo- 
lation  and  linear  t’ime  interpolation,  the  results of w-hirh 
1%-ill be reported  elsewhere. 

If the  above  set, of equations were  modified to exclude 
sound  wave  propagation, by elimination of the  time 
derivative of density  and  formation of‘ a vorticity equn- 
tion,  it  would  then  not be practical to apply  the  proposed 
systenl. On the ot8her hand,  it  can  evidently be tipplied 
to R multi-level  hydrostatically  filtered  baroclinic Inodel, 
provided that t,he vertically  integrated  divergence is not 
constrained.  The  applicability of the s)-sterrl depends not 
on the  scale  or  complexity of t,he  model  but o n l ~  on  tllc 
absence of a  const’raining  elliptic  diffcrcntid  equtltion. 

6. SUMMARY 

It  has  been  demonstrated  t~heoreticall-  and,  in one 
particular  case,  prttct’ically,  that the staggered  grid  system 
here proposed  can  be  advantageously  applied  in t’hc intr- 
gration of purely  marching  type llydrodynanlic-tllerrno- 
dynamic  models. The method is of a similar  type to 
Eliassen’s but  essentially  opposite  in its basic  principles, 
in thatm  here  the  linear terms may be interpolated,  spatially 
or perhaps  preferably  in  time, while the  advec.t~ivc tcrrns 
are applied  wit8h  centered differencing in  tmhe  conserv iL t ’  1011 

form.  Physical  considerat’ions  suggest  the  abstraction of 
energy from grid-scale motions by parametric  simulation ol‘ 
eddy exchange  processes,  and  Srnagorinsky’s  suggested 
method  for doing this seems to  be sufficient for  maintc- 
nnnce of computat’ional  stability.  The  essential  features 
of the syst,em  have  been  described  wit,hin  the  framework 
of ,a rot’at’ing  incompressible  barotropic fluid model  with a 
free surface, while it’s  practical  applicat’ion has been to :? 

somewhat more complex  model of a compressible fluid 
with thermal  convection. 
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